933 resultados para mitotic and meiotic cell divisions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were undertaken to produce genetic clones derived from all homozygous mitotic gynogenetic individuals in rohu, Labeo rohita Ham. ln view of this, attempts were made to interfere with the normal functioning of the spindle apparatus during the first mitotic cell division of developing eggs using heat shocks, there by leading to the induction of mitotic gynogenetic diploids in the F1 generation. Afterwards, viable mitotic gynogenetic alevins were reared and a selected mature female fish was used to obtain ovulated eggs which were fertilized later with UV-irradiated milt. Milt was diluted with Cortland’s solution and the sperm concentration was maintained at 10⁸/ml. The UV-irradiation was carried out for 2 minutes at the intensity of 200 to 250 µW/cm² at 28± 1°C. The optimal heat shock of 40°C for 2 minutes applied at 25 to 30 minutes a.f. was used to induce mitotic gynogenesis in first (F1) generation and at 3 to 5 minutes a.f. to induce meiotic gynogenesis in the second (F2) generation. The results obtained are presented and the light they shed on the timing of the mitotic and meiotic cell division in this species is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of lasers of three wavelengths in the visible region - 476, 488 and 514 nm on mitotic and meiotic cell divisions, growth, yield and activity of specific enzymes were studied in two taxonomically diverse plant species — A/lium cepa L. and Vicia faba. The effect of laser exposures was compared with the effect of two physical mutagens (Gamma and Ultraviolet radiations) and two chemical mutagens (Ethyl Methane Sulphonate and Hydroxyl amine). The study indicated that lasers could be mutagenic causing aberration in the mitotic and meiotic cell divisions while also producing changes in the growth and yield of the plants. Lasers of higher wavelengths 488 and 514 nm caused aberrations in the early stages of mitotic cell division whereas lasers of lower wavelengths (476 nm) caused more aberrations in the later stages of mitotic cell division. Laser exposure of 488 nm wavelength at power density 400 mW induced higher mitotic and meiotic aberrations and also induced higher pollen sterility than lasers of 476 and 514 nm. The frequency of mitotic aberrations induced by lasers was lesser than that caused by y-irradiation but comparable to that induced by EMS and HA. Lasers cause mutations in higher frequencies than UV. Lasers had a stimulatory effect on growth and yield in both plant species. This stimulatory effect of lasers on germination could not however be correlated to the activity of amylase and protease, the key enzymes in seed gennination. Enzymes such as peroxidase and catalase, involved in scavenging of free oxygen radicals often produced by irradiation, did not show increased activity in laser irradiated samples. Further studies are required for elucidating the exact mechanisms by which lasers cause mutations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within a total of 50 analyzed specimens a male individual of Trichomycterus davisi has been recorded with 81 chromosomes including 60 metacentric, 18 submetacentric and three subtelocentric chromosomes. When compared with diploid individuals (2n = 54) and the morphological standard of chromosomes, this male is a triploid with 3 = 81 chromosomes. Since staining with silver nitrate indicates three active nucleolar organizer regions (NORs), the three NOR- bearing chromosomes in this individual are genetically active. Analysis of the synaptonemal complex (SC) by electronic microscopy shows that there is an incomplete pairing of the third set of chromosomes in the triploid individual.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colonization of new habitats through dispersal of phytoplankton cysts might be limited, if resident populations outcompete invaders during germination. We reciprocally transferred Gonyostomum semen (Raphidophyceae) cysts from three lakes into native and foreign waters originating from the respective habitats. Germination rate and germling growth were impacted by water origin, but there was no preference for native water. Gonyostomum semen's ability to germinate in different conditions might explain its expansion in northern Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrastructure of Sorubim lima spermatogenesis during the premeiotic and meiotic periods was studied. Our observations showed that the germ cells in the cysts are connected by cytoplasmic bridges and the mitotic and meiotic divisions are slightly asynchronous, the first and the last spermatogonial generations differ in the cellular and nuclear volume, nucleolus, chromatin condensation, distribution, size, density, and shape of the mitochondria, presence of 'lamellae anulata', amount and dimension of the 'nuages', and movement of the centrioles. In addition to the nuclear prophase structures, the spermatocyte I shows changes in all other cellular organelles and elongated vesicles appear in the cytoplasm. The accentuated cytoplasmic density and thickened walled vesicles are morphological characteristics that differentiate spermatocytes II from the other germ cells in the cysts of Sorubim lima testis. (C) 1999 Harcourt Publishers Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleolus is a subcompartment of the nucleus and the site of ribosome biogenesis. During the mitotic and meiotic cell cycles, a disorganization and later reorganization of the nucleolar material occur, an event called nucleologenesis. In the spermatogenesis of mammals and other vertebrates, there is evidence of the disorganization of the nucleolus at the end of meiosis I, which supplies material for the cytoplasmic formation of an organelle called the chromatoid body (CB). The CB is a structure characteristic of spermatogenic cells and seems to be responsible for RNA metabolism in these cells and for some events of spermiogenesis, such as the formation of the acrosome, cellular communication between spermatids, and the formation of the spermatozoon middle piece and tail. The aim of this paper was to obtain information about the cytochemical and ultrastructural nature of the nucleolar cycle and the distribution of cytoplasmic RNAs in the seminiferous tubule cells of Rattus novergiucus, Mus musculus and Meriones unguiculatus. The testis was fixed in Bouin and Karnovsky solutions for conventional histological analysis and for cytochemical study that included: periodic acid-Schiff, hematoxylin-eosin, Feulgen reaction, silver-ion impregnation, Gomori's reticulin stain, toluidine blue, modified method of critical electrolyte concentration, and basic and acid fast green. The blocks of testis fixed in glutaraldehyde were used for ultrastructural analysis by transmission electron microscopy. Ultrathin sections were double-stained with uranyl acetate and lead citrate. All the techniques used provided information on the origin and function of the CB in the spermatogenic cells. Therefore, considering the persistence of the RNA and nucleolar ribonucleoproteins during spermatogenesis of Rattus novergicus, Mus musculus and Meriones unguiculatus, our findings corroborate the statement that these molecular complexes are very important in the spermiogenesis phases. It can be suggested that these ribonucleoprotein corpuscles (chromatoid bodies) are of nuclear origin and have a role in the successive series of events that occur in the formation of the spermatozoon. Furthermore, these results reinforce the conservation of the mechanisms involved in preserving necessary levels of protein stocks in different stages of cell differentiation, from spermatid to spermatozoon, in these rodent species. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Molecular Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rare terrestrial species, Oedogonium pakistanense, was first recorded from Hubei Province, south-central China. Morphological characters. including the predominant occurrence of apical cell division and unique lateral apical caps, are described. The growth of the filaments in O. pakistanense from China is usually the result of the repeated divisions of the apical cells and intercalary divisions are rare. It is suggested that this species may represent an evolutionary transition between Oedogonium and Oedocladium, the latter being a terrestrial genus with branched filaments and cell division more often terminal than intercalary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.